

ZERO EMISSION TECHNOLOGIES : AN OPTION FOR CLIMATE CHANGE MITIGATION

Philippe MATHIEU

Professor of Power Generation

Université de Liège - Institut de Mécanique, B52/3 Chemin des chevreuils, 1 - 4000 Liège - Belgium Tel.: +32-4-3669268 – Fax: +32-4-3669563 - e-mail : pmathieu@ulg.ac.be

Basic principle of a Zero-Emission Power Cycle $(O_2/CO_2 \text{ or } O_2 /H_2O \text{ cycles})$

• O_2/H_2O and O_2/CO_2 : near Zero Emission Power Cycles use of O_2 as the fuel oxydiser produced in an air separation unit (ASU) and of H_2O or CO_2 as the cycle working fluid and thermal ballast for flame temperature control

Rationale of oxy-fuel cycles for Near Zero Emission Power Generation

- Use of nearly pure O_2 (+ Ar) as fuel oxidiser so that the flue gas is highly enriched in CO_2 : air separation required
- Use of CO_2 itself or of H_2O as the working fluid in a gas cycle and as thermal ballast for flame t° control in stoichiometric proportions
- Separation of CO_2 and H_2O is easy and there is no longer need for a very penalising scrubber separating CO_2 from N_2 in the flue gas
- Take advantage of the performance of most advanced GTs
- Two main options
 - $>O_2/H_2O$ cycles
 - $>O_2/CO_2$ cycles
- CES water cycle; Graz cycle; AZEP cycle (Alstom/NorskHydro); HiOx (Aker Kvaerner); MATIANT

The regenerative E-MATIANT gas cycle

1-2 : intercooled staged compressor ; 2-3 : upper pressure cycle ; 3-4 : HP combustion chamber ; 4-5 : HP expander ; 5-6 : LP combustion chamber ; 6-7 : LP expander ; 9-1 : water cooler/separator ; 4-5-8 : non reheated expansion.

Configurations of O₂/CO₂ MATIANT cycles

<u>E-</u>MATIANT cycle

Ericsson-like CO₂ regenerative gas cycle

Boundary conditions : TIT = 1300 °C; LP turbine exhaust gas : 700 - 750 °C complying with temperature limits of advanced materials in regenerator and HRSG ASU, extracted CO₂, fuel and oxygen compressors in the system

Cooling of hot components with extracted CO_2 or with compressed N_2 from ASU

Pinch point at regenerator inlet : 100°C Upper cycle pressure : > = 110 bar Reheat pressure : optimised 25-40 bar Net cycle efficiency : 40-45%

Improvements of O₂/CO₂ E-MATIANT cycles

- Recycling of the extracted water, superheated in the regenerator, in the LP combustion chamber: increase of specific power output and efficiency (similarly to STIG GTs)
- Use as a CC: adiabatic compressor and HRSG with advanced steam turbines (3PR, supercritical steam, 700°C) : ? > 50%
- Use as an IGCC : addition of a gasification unit and a syngas clean-up unit downwards of the GT combustion chambers. Asset: the ASU is already existing; no need for a shift reaction

of CO in the syngas and separation of CO_2 and H_2 ?~42-45%

- Integration of a high t° fuel cells SOFC by the use of the sensible heat in hot exhaust flue gas (900°C) for preheating of fuel, O₂ and water/steam : ? 47-49%
- Integration of a high t° conducting membranes (ITM or OTM) for oxygen production (900°C) : ? ~45%

Modelling of the cycles : CO₂ properties

- Heavier than air and water (molecular weight: 44 against 29 and 18)
- Lower specific heat Cp than water (nearly the half) but roughly the same as air (for sizing of heat exchangers). Lower than air in the compression zone
- Lower adiabatic exponent γ = Cp/Cv (for sizing of turbomachines): less compressible than air and steam
- Low critical point (73 bar; 31°C) against 221 bar; 375°C for; water
- Higher density than water and lower in gaseous state than steam (influence on the dimensions of components)
- Chemically reactive (interaction with storage medium)
- •Supercritical CO₂ behaves like a liquid (density) and like a gas (viscosity)

Combined Cycle based on a O_2/CO_2 Brayton-like gas cycle : CC-MATIANT cycle

Combined Cycle : O_2/CO_2 regenerative Brayton – like gas cycle with reheat and steam cycle with HRSG. 1-2 : adiabatic compressor ; 2-3 : upper pressure cycle ; 3-4 : HP combustion chamber ; 4-5 : HP expander ; 5-6 : LP combustion chamber ; 6-7 : LP expander ; 9-1 : water cooler/separator ; 4-5-8 : non reheated expansion.

COST OF CAPTURE or MITIGATION COST

⇒Definition : ratio of increase of the electricity cost $\Delta COE (c \in /kWh)$ and of CO_2 emission reduction ΔE (gCO_2/kWh) ⇒MC (Mitigation Cost) = $\Delta COE / \Delta E$ (€/ton CO_2 avoided) ⇒COE_{st} = [I (capital cost/y) + O&M/y + F_{st} (fuel cost/y]/PE (production/year) F_{st} = (€/kWh) = fuel cost (€/GJ)/?_{st} (kWh/GJ) ⇒COE_{ZEP} = [I(ZEP unit) + O&M_{ZEP}]x[W_{st}/W_{ZEP}]+ F_{ZEP}/PE with F_{ZEP} (€/kWh) = fuel cost (€/GJ)/?_{ZEP} kWh/GJ)= F_{st}x[W_{st}/W_{ZEP}]= F_{st}x[?_{st}/?_{ZEP}] ⇒E_{ZEP} = E_{st} x (1 - R)x W_{st}/W_{ZEP} (R = 98%) $\Delta E = E_{st} - E_{ZEP} = E_{st}[1 - (1 - R)x W_{st}/W_{ZEP}]$ Reference NGCC ?_{st} = 55%; E_{st} = 350 gCO₂/kWh

MITIGATION COST

COE for a E-MATIANT plant 5 -7 cent€/kWh

+ 50-100% above the COE of a standard NGCC

Comparable to COE of wind energy ('4-8 cent€/kWh)

⇒MC : ranking of technologies with capture

IGCC (30 \in /ton CO₂ avoided) < PC (40.5+-7.5) < NGCC(50.5)

MC for the E-MATIANT cycle is 45 - 90 €/ton CO₂ avoided and is in the same range of that of natural gas and coal fired plants with capture by chemical absorption in the flue gas (40 - 60 €/ton CO₂ avoided)

Emissions (g CO₂/kWh) Cost of electricity COE ($c \in kWh$) versus specific emissions (gCO₂/kWh) for coal (PC, IGCC) and natural gas (NGCC, E-MATIANT) power plants without and with capture and without and with the external costs (vertical bars). The mitigation costs (the slope of the straight lines) are mentioned for each technology.

- •The technical issues are linked to the composition of the working fluid:design of turbomachines operating on CO₂ / H₂O; development of materials and cooling techniques
- •Cooling systems of CO_2 expanders and combustors at 1300°C and higher
- •Combustion in pure O_2 in a CO_2 atmosphere under pressure, in stoichiometric conditions \rightarrow the flame stability is demonstrated at 1 bar
- Chemical behaviour of CO₂
- •Oxygen production using high temperature membranes; chemical looping
- •Development of high temperature steam turbines (>=700°C) cooled with steam : steam cooled GT

Advantages of ZEP cycles

- >Low emission of CO_2 AND of $NO_{x'}$, SO_2 and particulates (lower than in flue gas and fuel decarbonisation)
- \blacktriangleright Separation of CO $_2$ and H $_2O$ is easy in a cooler separator or a condenser
- Modular structure and low degree of complexity (availability and reliability)
- > High fuel flexibility : fossil fuels, biomass and hydrogen
- Performance improvements by the use of advanced GTs and boilers
- ➢Possible integration of high t° fuel cells and I TM at high t°

Advantages of ZEP cycles

> No use of chemicals for capture (no emission of solvents)

- > No waste products (possibly toxic) to dispose of
- ➤ High purity of the delivered dry CO₂ (water separation); the extracted CO₂ is contaminated with non condensible gases (Ar, NOx,N2 coming from ASU and fuel) and with impurities from the fuel like sulfur, metals
- Potential for use at small and large scale in off- and on shore applications
- Cost constrain on the GT : purchase price has to be 200 €/kW as for a current advanced industrial air based GTs

Conclusions

- >ZEP cycles are only designed for CO_2 emission mitigation but at the same time they do not release other pollutants. Then the question about CO_2 purity for the sequestration arises
- They accept a large range of fuels like solid and liquid fuels, NG, syngas CO + H₂, hydrogen, biofuels, wastes...for combustion or gasification
- The various types of ZEP cycles (O_2/H_2O and O_2/CO_2 MATIANT cycles) have high and similar performance (40-50% efficiencies) and very low specific emissions (a few gCO₂/kWh)
- > Technical issues are solvable and ZEP cycles are feasible
- ZEP technology could be cost effective in a near future, especially in the framework of any kind of regulations on emissions and of fiscal measures (taxes, trading, certificates.)

FUTURE OBJECTIVES

- Need for cheap O₂ production (cryogenics; O₂ or ion transport through dense ceramic membranes; chemical looping; ceramic auto-thermal recovery(CAR); other)
- Need for high efficiencies and cost reductions in the long run by a full integration, especially of an air separation unit and of CO₂ re-use (EOR; ERCBM) and sequestration

Need for R&D,D to demonstrate the concept in a pilot plant by 2015

FUTURE PROSPECTS

- If BIOMASS (with reforestation) is used in co-combustion or co-gasification in ZEP plants, its carbon is separated and sequestered and is hence withdrawn from the carbon cycle : negative emission
- If a future economy is based on zero emission energy systems and uses H₂ as an energy carrier, it has to be produced free of carbon, for instance by water electrolysis using zero emission plants (renewable energy, hydropower, nuclear energy, ZEPP), Then O₂ is simultaneously generated as a by-product.

The real issue is to produce cheap and clean H₂

• High temperature fuel cells SOFC, renewable energies and sequestration technologies may be integrated in ZEP gas cycles, increasing efficiency and power output; but cost is currently prohibitive for fuel cells

The CES Process

Advances Zero Emission Power (AZEP) Process

