

Institute for Thermal Turbomaschinery and Machine Dynamics

Graz University of Technology Erzherzog-Johann-University

Design Optimisation of the Graz Cycle Prototype Plant

Presentation at the ASME Turbo Expo 2003

June 16 - 19, 2003, Atlanta, Georgia, USA

Herbert Jericha, Emil Göttlich, Wolfgang Sanz and Franz Heitmeir

Institute for Thermal Turbomachinery and Machine Dynamics
Graz University of Technology
Austria

Outline

- Motivation
- Oxy-Fuel Combustion
- Graz Cycle
- Efficiency and Parameter Study
- Layout of turbomachinery components
- Economical Aspects
- Conclusion

Background

- Kyoto Protocol demands the reduction of greenhouse gases
- CO2 is responsible for about 60 % of the greenhouse effect
- About 30 % of the anthropogenic CO2 emissions come from fossil fuel fired heat and power generation
- Possible measures:
 - efficiency improvement
 - use of fuels of lower carbon content (methane)
 - use of renewable (or nuclear) energy
 - development of advanced fossil fuel power plants enabling CO2 capture

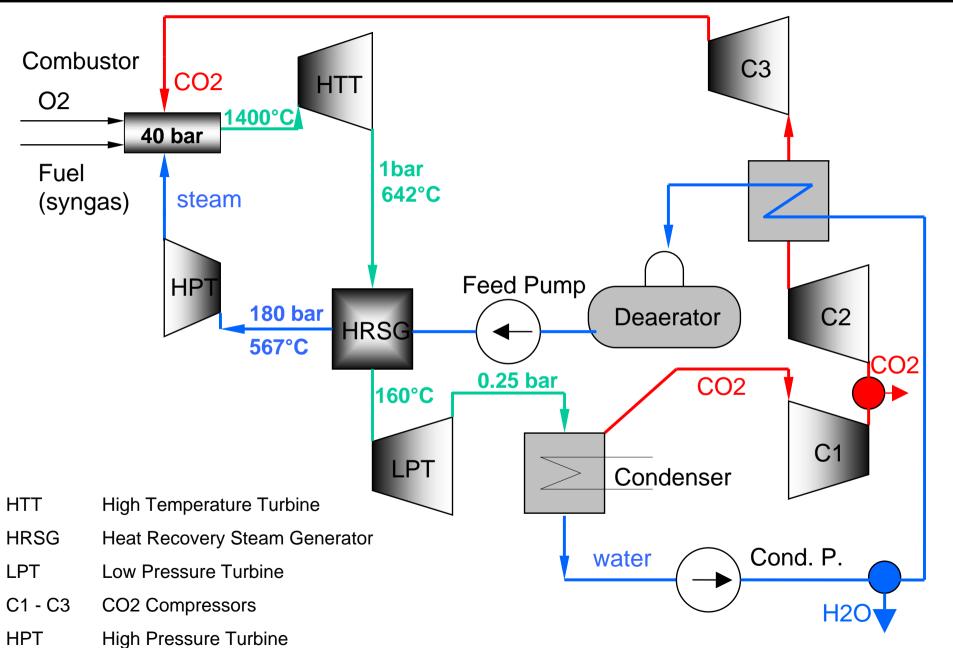
Possible New Technologies

- Fossil fuel pre-combustion decarbonization to produce pure hydrogen or hydrogen enrichted fuel for a power cycle (e.g. steam reforming of methane)
- Power cycles with post-combustion CO2 capture (membrane separation, chemical separation, ...)
- Chemical looping combustion: separate oxidation and reduction reactions for natural gas combustion leading to a CO2/H2O exhaust gas
- Oxy-fuel power generation: Internal combustion with pure oxygen and CO2/H2O as working fluid enabling CO2 separation by condensation

Pros and Cons of Oxy-Fuel Combustion

- Combustion with nearly pure oxygen leads to an exhaust gas consisting largely of CO2 and H2O
- CO2 can be easily separated by condensation, no need for very penalizing scrubbing
- Very low NOx generation (only nitrogen from fuel)
- + Flexibility regarding fuel: natural gas, syngas from coal or biomass gasification, ...
- New equipment required
- Additional high costs of oxygen production
- New cycles are possible with efficiencies higher than current air-based combined cycles (Graz Cycle, Matiant cycle, Water cycle,...)

History of the Graz Cycle



- 1985: presentation of a power cycle without any emission
 - H2/O2 internally fired steam cycle, as integration of top Brayton cycle with steam and bottom Rankine cycle
 - efficiency 6 % points higher than state-of-the art CC plants
- 1995: Graz cycle adopted for the combustion of fossil fuels like methane (CH4)
 - cycle fluid is a mixture of H2O and CO2
 - thermal cycle efficiency: 64 %
- 2000: thermodynamically optimized cycle for all kinds of fossil fuel gases (syngas, gas from gasification processes, ...)
- 2002: conceptual layout of turbomachinery relevant components of prototype Graz Cycle power plant

Cycle Scheme

Main Cycle Data

- Fuel: syngas from coal gasification:
 50 % H2, 40 % CO, 10 % CO2
- Complete stoichiometric combustion
- Combustion pressure in the order of the maximum pressure found in aircraft engines: 40 bar
- Turbine inlet temperature in the range of high power stationary gas turbines: 1400° C
- Turbine isentropic efficiency: 92 % (HPT 90 %)
- Compressor isentropic efficiency: 90 %
- HP turbine: 180 bar / 567° C
- Condenser: 0.25 bar / 15° C at exit
- HRSG: hot inlet temperature: 642° C
 △T_cold: 18° C, △T_hot: 75° C
- CO2 provided at 1bar

Balance of Graz Cycle

Turbines								
Name	HPT		HTT		LPT		Total	
Power [MW]		9.3		91		10.7		111

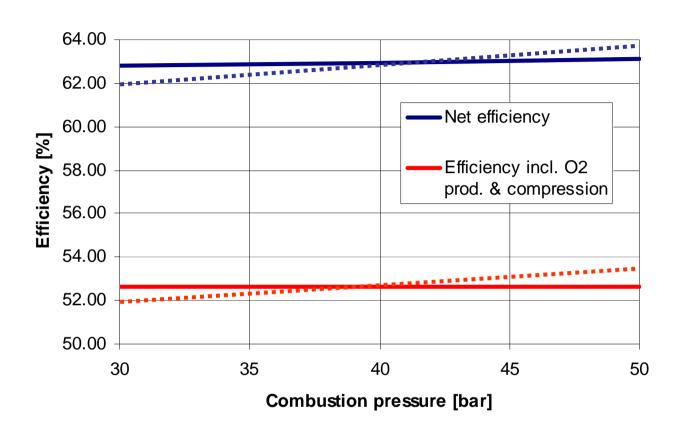
Compressors and Pumps						
Name	C1	C2	C3	Cond.P.	Feed P.	Total
Power [MW]	5.5	4	8.9	0.01	0.4	18.8

Total heat input: 143.4 MW

 $\eta = (111-18.8)/143.4$

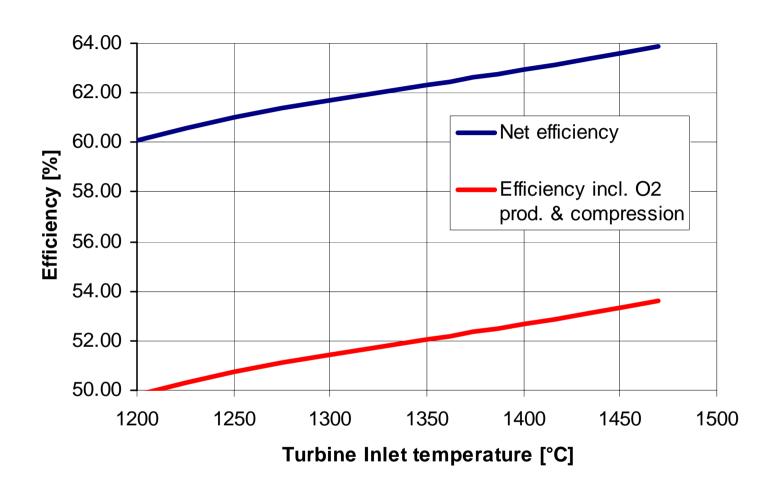
Thermal efficiency: 64.3 %

Additional Losses and Expenses



- Including generator / mechanical losses: η = 98 %
 Net cycle efficiency: 63.0 %
- Oxygen production (0.15 0.3): 0.25 kWh/kg (8 MW)
 Efficiency: 57.5 %
- Oxygen compression (1 to 40 bar, inter-cooled, η = 85 %): 0.107 kWh/kg (3.4 MW)
 Efficiency: 55.0 %
- Compression of separated CO2 for liquefaction (1 to 100 bar, inter-cooled, η = 85 %): 0.03 kWh/kg (3.3 MW)
 Efficiency: 52.7 %

Efficiency vs. Combustion Pressure



- Nearly constant efficiency if inlet temperature of HPT is varied (from 680° C to 500° C), especially if O2 compression is considered
- 2 % (1.5 %) points increase in the range of 30 50 bar, if
 HPT inlet temperature is fixed at 567° C

Efficiency vs. HTT Inlet Temperature

- Strongest influence on cycle efficiency
- Variation of 4 % -points for a TIT range of 1200° C 1470° C

Lay-out of Components

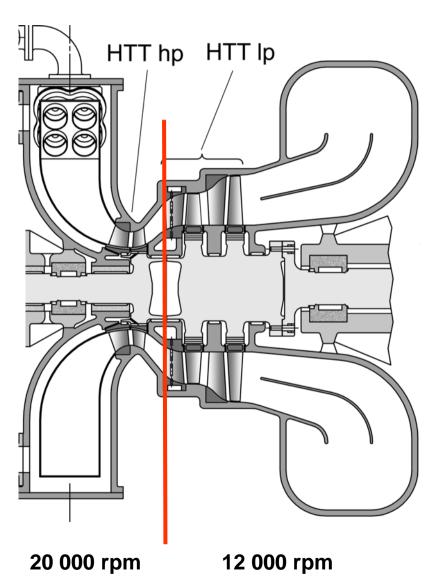
Critical components

- Combustion chamber for stoichiometric combustion with O2 and cooling with steam and CO2
- High temperature turbine HTT unusual working fluid of 1/4 H2O and 3/4 CO2 cooling with steam

Non-critical components

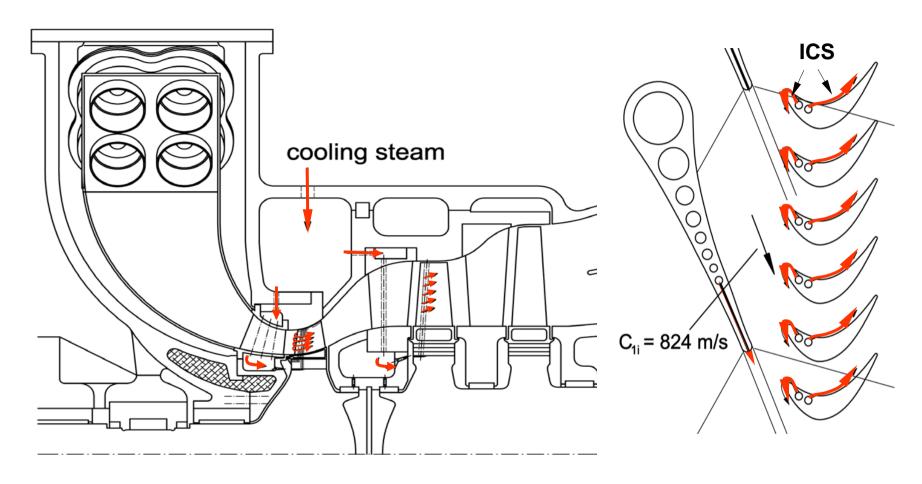
- Low pressure turbine LPT
- High pressure turbine HPT
- CO2 compressors
- Heat exchangers

General Arrangement of Turbomachines


- First design deliberations show reasonable dimensions of the turbomachinery for a 92 MW plant
- Turbo set with 3 different speeds
- 20 000 rpm: HTT first stage + HPT + C3 compressor
- 12 000 rpm: HTT second/third stage + C2 compressor
- 3 000 rpm: LPT + C1 compressor

20 000 rpm Comb. Ch. HPT HTT1+2 Generator 12 000 rpm 3 000 rpm

High Temperature Turbine HTT

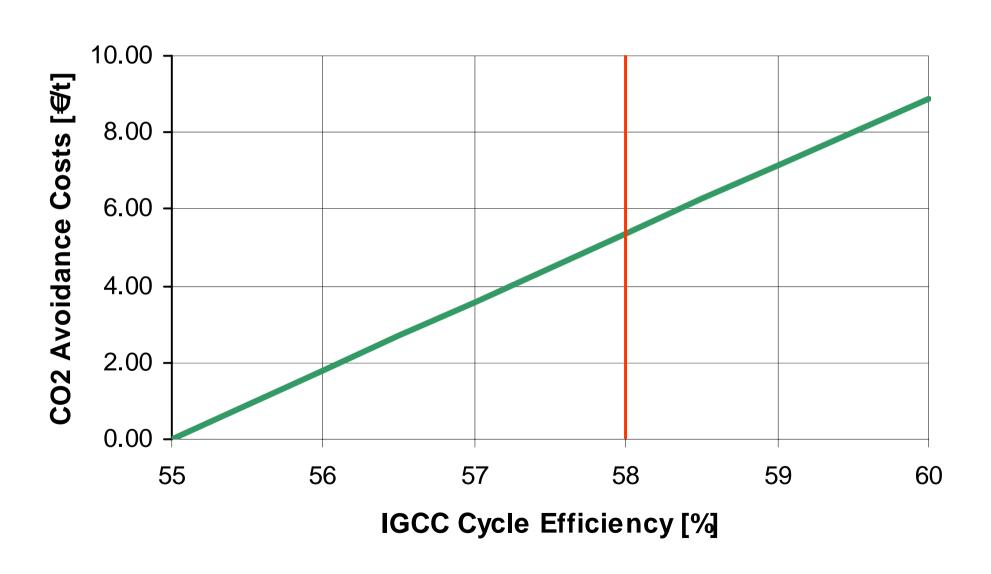

- Pressure drop: 40 bar 1 bar
- Comparison of R, cp between CO2/H2O mix and air-turbine exhaust gas:

 -11 % R, +23 % cp => same enthalpy drop
 higher temperatures for same pressure ratio -> higher cooling effort!
 smaller volumes for same flow conditions (p, T)
- High rotational speeds to keep number of stages low
- Split into two overhang shafts with 20 000 and 12 000 rpm to obtain optimal speeds

HTT Cooling

- Cooling of 1st and 2nd stage blading
- Steam with favorable cooling properties from HPT exit at 40 bar available
- Innovative Cooling System ICS using underexpanded jets: 2 radial holes and 2 slit rows

Economical Aspects

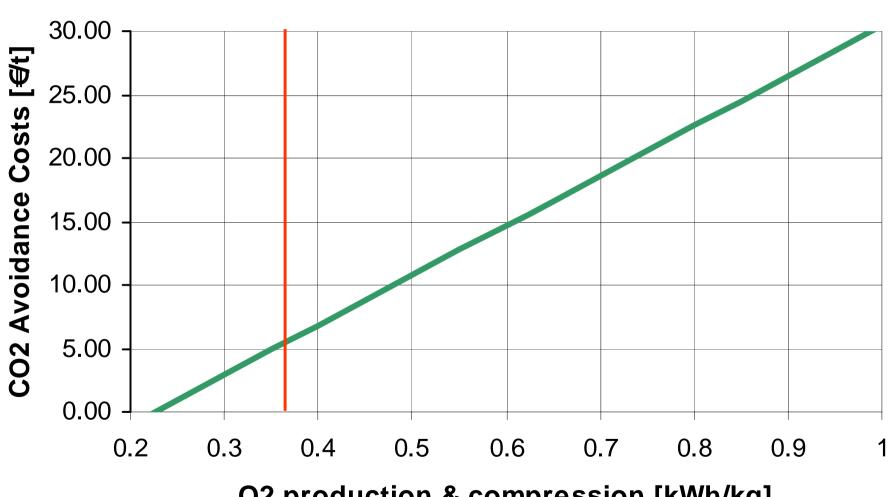

- Comparison with a Combined Cycle Power Plant fired with syngas from coal gasification (IGCCPP) with same power output, $\eta = 58$ % (excluding gasification)
- Electricity selling price: 6 €c/kWh
- Graz Cycle with zero emission and 55 % net efficiency (excluding CO2 compression)
- Assumption of the same capital costs (similar erection costs, no costs for new developments, no costs for ASU), assumption of the same O&M costs
- CO2 avoidance costs (3 % points efficiency):
 5.3 €t CO2

Sensitivity Analysis - I

Variation of Cycle Efficiency

Sensitivity Analysis - II

Variation of Electricity Selling Price



Sensitivity Analysis - III

Variation of O2 Effort

O2 production & compression [kWh/kg]

Summary

- Presentation of the Graz Cycle as "zero-emission gas turbine cycle" with oxy-fuel combustion and CO2 retention
- Thermodynamic layout promises efficiencies up to
 63 % (55 % if expenses of O2 supply are considered)
- Possible arrangement of turbomachines running at 20 000, 12 000 and 3 000 rpm is presented which allows short flow paths in the hot sections
- Innovative design for the two critical components, combustion chamber and High Temperature Turbine, is suggested
- First economic considerations show competitiveness to state-of-the-art combined cycle power plants for a future CO2 tax

Activities in the future

- Detailed design of HRSG with industrial partner
- More detailed cost estimations with industrial partners
- More in-depth design of HTT and Combustion Chamber
- Ultimate goal: erection of a demonstration plant